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A completely new derivation of the probability distribution in energy of a small 
component of a composite system, which was previously derived from the 
composition law of the structure function and Boltzmann's principle, is given by 
the method of subordination in which the conjugate, intensive parameter is 
randomized and is shown to possess a Bayes distribution. The derivation allows 
an extension of the class of structure functions to include strictly stable laws 
which possess domains of attraction like the normal law. 

1. T H E  C O M P O S I T I O N  LAW 

The composition law for the structure function determines the distribu- 
tion in energy of a small component of a composite system (Khinchin, 1949). 
The derivation rests upon the assumption that the phase space volume element 
is the direct product of  the phase spaces of  all components (Khinchin, 1949, 
pp. 40-41),  which can be taken to be synonymous with the assumption of 
the statistical independence of the components of  the composite system 
(Lavenda, 1991). As such the composition law must be an asymptotic result 
for systems comprised of a very large number of  degrees of  freedom. 

Boltzmann's principle, 

S(~) = In 1~(~) + const (1) 

relates the entropy of any component of  a composite system S(e) whose 
energy is ~ to the surface area l~(e) enclosing the volume of phase space 
occupied by the component, where temperature is measured in energy units 
for which Boltzmann's constant is unity. On the strength of this principle, 
the probability density for the energy of a small component is seen to be an 

~ Universi~ degli Studi, Camerino 62032 (MC), Italy. 

615 
0020-7748/95/0400-0615507.50/0 �9 1995 Plenum Publishing Corporation 



616 Lavenda 

exponential function of the entropy difference between the sum of the entro- 
pies of the n components and n times the entropy of the composite system 
[cf. the first line in equation (5)], instead of the entropy of the composite 
system itself (Khinchin, 1949, p. 145). 

It is a common practice in statistical estimation to estimate parameters 
appearing in a distribution in terms of a statistic, like the sample mean. This 
means that the parameters are something more than "mere" parameters, which 
in thermodynamics characterize the reservoirs, and can undergo randomiza- 
tion. Whereas the extensive thermodynamic random variables are distributed 
in terms of the "frequency" of occurrence, their intensive conjugate random 
variables are distributed according to "degree-of-belief" that certain values 
are more probable than others (Lavenda, 1991, pp. 204-214). 

Equipped with the distribution in the intensive variable, we will show 
that the distribution of an extensive, and globally conserved, quantity, like 
that of the energy of a small component of a composite system, is actually 
derived from the process of subordination. The probability distribution of the 
subordinated process will thus always be associated with the microcanonical 
ensemble, and allow a complete characterization of the mechanical structure 
of the physical system. The method of subordination will also enable us to 
enlarge the class of acceptable structure functions (Lavenda and Florio, 1992a) 
and justify the generalized Boltzmann principle of extreme-value distributions 
(Lavenda and Florio, 1992b). 

2. THERMODYNAMIC MEANING OF SUBORDINATION 

For purposes of illustration, we choose the gamma density for the 
energy ~, 

(13~ e -~~ (2) 
f(~1130) = 130 F(m) 

which is parametrized by the inverse temperature 130, where m represents 
half the number of degrees of freedom. The parameter is usually referred to 
as the "state of nature," which characterizes the heat reservoir in which the 
system is in thermal contact. As a problem in statistical estimation, the 
inverse temperature can be estimated in terms of the sample mean which 
is constructed from observations made on the internal energy. Therefore, 
it, too, must fluctuate. 

In order to convert the gamma density (2) for the energy into a distribu- 
tion for the inverse temperature, we introduce the transform 130~ = 13~0, where 
e0 can be taken as the energy of the reservoir, which if large enough can be 
considered as a constant. Introducing this transform into (2) results in a new 
gamma density 
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(e~ e -~~ (3) 
f(13[~) = go F(m---'--'~ 

for the inverse temperature, which is now parametrized by the energy of the 
reservoir, eo. 

If we want the distribution in the energy, we must first establish thermal 
equilibrium: 13 = [3o. This is the directing process (Feller, 1971) whose 
density is (3). Multiplying it by (2) and integrating over all values of 13 gives 

/ (e leo)  = /(e113)/(131s d13 

1 E0(V_s 1 
= B(m, m) (~ + ~o) 2m (4) 

where B(m, m) = F2(m)/F(2m) is the beta function. With the change of 
variable p = e/(e + ~0), (4) becomes the beta distribution (Lavenda, 1991) 

pm-l(1 _ p)m-I __ fexp{S(~) + S(c0) - 2S(e + ~o) - In B(m, m)} 
f (P )  = B(m, m) - [ exp{AS(~) + AS(~o) - In B(m, m)} 

(5) 

where the entropy is 

S(x) = (m - 1)In x (6) 

while the reduction in entropy is 

AS(x) = (m - 1 )  l n (x -~x0)  (7) 

For an entropy of the form (6), its concavity property ensures that it will be 
a monotonically increasing function, 

2 S ( e +  ~o) > - 2 S ( ~ - ~ ) > - S ( e ) + S ( e o )  

which, in turn, ensures that (5) will be a proper probability density. 
Moreover, the second equality in (5) holds only for m > 1 (Lavenda, 

1994), which is a manifestation of asymptotic independence. The distribution 
can be expressed entirely in terms of the entropies of the composite system, 
which are statistically independent. 
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Like the gamma density (2), the beta density (4) is parametrized by m 
> 0. For a single degree of freedom, we obtain a particular form of the beta 
density (of the first kind), 

1 1 
f(O) "rr [9(1 - "l.~)] 1/2 (8) 

where ~ = e/(e + e0), called the arcsine probability density, so named because 
its integral is the arcsine function. The arcsine probability density is ubiquitous 
in the theory of random walks. No thermodynamic characterization for this 
distribution is possible (Lavenda, 1995). As the number of degrees of freedom 
increases from two to three, the probability density transforms from a uniform 
to a A-shaped distribution. For m > 2, the beta density (4) has a mode at 
1/2, implying that the most probable case is where the two subsystems share 
the same amount of energy, A thermodynamic characterization for such 
distributions is possible, where the subordinated distribution becomes asymp- 
totically independent. 

It is important to recognize the fact that the subordinated probability 
density (4) has the same form as the prior probability density of the microca- 
nonical ensemble. In fact, the canonical probability density (2) has been 
constructed from the Laplace transform of prior probability density, 

namely, 

l)(e) = e " - l  (9) 

Z([3o) = e-~~ de (10) 

in such a way that the associated probability density 

e-i~0e 
f(e[ 0) = r (E) 

is properly normalized. 2 
A rather remarkable feature is that the subordinated probability densities, 

like (4), will always turn out to be proper probability densities, at least in 
the asymptotic limit of a large number of degrees of freedom or for large 
values of the variate [cf. equation (26) below]. The most important case 
where subordination comes into play is when the same probability density 
determines both the probability distribution of the variable and the distribution 

2A similar situation often appears in the Bayes formulation, where the prior probability density, 
representing a vague knowledge about the parameter (Jeffreys, 1961), can also be improper. 
The associated probability density will, however, always turn out to be a proper probability 
density [el. discussion following equation (12) below]. 
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of the randomized parameter. This choice of the probability density for the 
randomized parameter coincides with the one derived from Bayes' theorem 
(Lavenda, 1991, pp. 192-195). 

In order to derive the Bayes distribution, we cast the gamma density 
(2) as the law of error 

f(e] [30) = A([3o)e s(~)-s(E~176176 

where the prime denotes differentiation, 

eo = (m - 1)/[30 (11) 

the norming constant A([3o) = [30, and the gamma function is substituted 
for (m - 1)m-~e -(m-t). Introducing the dual to the entropy through the 
Legendre transform 

lnZ([3o) = S(8o) - S'(e0)e = - ( m  - 1)ln 130 + In F(m) 

where (11) has been used to obtain the second equality, we obtain the Bayes 
distribution (Lavenda, 1991, p. 206) 

f([3180) -- A(eo)e-inz(f~)+l~z(%)+~ (12) 

upon interchanging the endpoints of the interval, where 12([3) is the prior 
probability density and A(e0) is a norming constant. 

By involving the law of equipartition of energy in the form (11), which 
was the form found by Gibbs (1902), we are naturally led to the Bayes-Laplace 
principle of setting the prior probability density equal to the uniform probabil- 
ity density. In the absence of any prior information about [3, the proponents 
of the Bayes-Laplace principle argue that only the uniform prior would 
correspond to knowing nothing or providing for a uniform assessment over 
the entire positive half-axis. In this case, we would set the norming constant 
A(eo) = eo. 

This choice of the prior probability density was criticized by Jeffreys 
(1961) precisely because we do know that [3 can take on values only on the 
positive half-axis. Jeffreys argued that we should take the logarithm of the 
parameter as the prior distribution so that its density is 

f~([3) = [3-~ (13) 

This requires that the law of equipartition of energy be given by 

eo = ml[3o (14) 

in which case there is no need of the norming constant. In the latter case, 
we note a parallelism between the improper density chosen for the structure 
function (9) and Jeffreys' rule (13). It is interesting to remark that for small 
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values of m, which was definitely not excluded in Gibbs' analysis (Gibbs, 
1902, p. 118), we can discriminate between the Bayes-Laplace principle and 
Jeffreys' rule, (13). In either case, the change of variable el30 = e013, used 
to go from (2) to (3), is essentially a short-cut to the Bayes distribution. 

Another observation to be made is the intimate relation between the 
Laplace and Legendre transforms. The Legendre transform selects out that 
value of the parameter of the distribution which maximizes overwhelmingly 
the probability distribution. 

Furthermore, provided the distribution belongs to the exponential family, 
the subordination procedure leads to a beta distribution of the second kind. 
Hence, subordination can be considered as the probabilistic origin of  power 
laws in physics. In thermodynamics, the process of subordination transforms 
the probability distribution of the canonical ensemble to that of the microca- 
nonical ensemble. Thus, subordination is to be associated with the introduction 
of a constraint, related to the appearance of  a0, that leads to a reduction in 
the ensemble description. 

3. S U B O R D I N A T I O N  OF E X T R E M E - V A L U E  D I S T R I B U T I O N S  

On the strength that the probability density of the subordinate process 
has the same form as the prior probability density, just as (4) gives the same 
expression for the entropy as (9), subordination may be used to justify the 
expressions for the entropy reduction in the distribution of extreme values. 
Hitherto, we have relied essentially on the property of concavity, and the 
Legendre transform of the generating function, whose form is known 
(Lavenda and Florio, 1992b). The Legendre transformation thus converts a 
convex function into a concave one. 

For illustrative purposes, we choose the L6vy probability density 

1 e_l/4x = S'(x) 
f (x)  - 2(,trx3)l/------------ ~ [~(_AS(x))]I/2 e as(x~, x > 0 (15) 

because it is the 
entropy reduction, 

has been identified as 
Laplace transform 

only strictly stable law known in closed form. 3 The 

1 
AS(x) = - - -  (16) 

4x 

the Legendre transform of the logarithm of the 

3This is a consequence of the fact that the generating function is given in terms of a Basset 
function of order 1/2, which can be expressed in terms of elementary functions [cf. equation 
(17) below.] 
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2xf- ~ e -xOx-1/4x dx = hl/4Kl/2(x/~o) = e (-x~ (17) 

where K1/2 is a Bessel function of imaginary argument, or a Basset function. 
The entropy reduction (16) is a concave function which, because of its super- 
additivity, 

AS(x1 q- x2) --> AS(Xl) + AS(x2) 

is also a monotonically increasing function. Superadditivity is a sufficient, 
but not a necessary, condition for a function to be monotonically increasing. 
Even subadditive entropies, like that of black radiation, are also monotonically 
increasing functions. 

The "canonicalized" probability density can be written as the error law 

f(x[ ho) = S' (x) eaS(x) -as(~o)-s'(xo)(x-xo~ 
[ ~ ( -  AS(x))] 1/2 

1 e_t(xo~) 1/2_ 1/2x1/212 (1 8) 
- 2(~rx3)1/2 

which brings out the profound relation between least squares and maximum 
probability. The conjugate parameter h0 has been introduced as the derivative 
of the entropy reduction (16), 

1 
S' (Xo) - 4x 2 - Xo (19) 

which is the common practice in Legendre transforms, since the dual of (16) 
is the logarithm of the generating function, 

lnZ(ko)(k0) = AS(xo) - S'(xo)Xo = - ~ 0  (20) 

In order to obtain the second equality in (20), we have introduced the definition 
of the conjugate variable, (19). 

The exponent of the Bayes probability density is derived from the error 
law (18) by introducing the Legendre transform (20), and a similar expression 
for ln(h), and interchanging endpoints. Multiplying it by the prior probability 
density f ( h )  and a suitable norming constant, we get 

f(X ]Xo) = A(xo)e-lnZ(X)+lnZ(X~176176 

= A (xo)e -t(mx)1/2_ l/2xl/212~(h) (21) 

where 9~o and Xo are related by 

(lnZ)'(ko) = -Xo (22) 
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This relation is obtained by minimizing the exponent in (21), which is known 
as the likelihood function (Lavenda, 1991, p. 192). The extremum condition 
(22) is in complete accord with (19). That this is, indeed, the maximum 
likelihood value of h follows from the convexity property of lnZ(k). 

Since k0 is the only minimum of [(x0X) 1/2 - 1/2x01/2] 2 in the exponent 
of (21) on [0, w], the dominant contribution to the integral of (21) will come 
from the neighborhood of k0. This observation permits us to use Laplace's 
method in which the limits of integration are extended to +__w, and the 
quadratic form is developed in a Taylor series about h0. To lowest order we get 

e-4~x-x0) 2 dh = ~Xo3 ) (23) 

Thus, the constant of integration in (21) is A(xo) = (x~l'rr) I12. As for the initial 
probability density It(h), it suffices to note that since the limits of integration 
in (23) have been extended to -+~, we must choose the Bayes-Laplace 
principle and consider a uniform distribution. 

Invoking the condition of equilibrium, h = Xo, between (18) and (21), 
we complete the square in the exponent of their product to obtain the quadratic 
form {[(x + Xo)h] 1/2 - l l ( x  + xo)l/2} 2. This has a unique minimum at X0 = 
1/(x + x0) 2, which will be close to the minimum in the Bayes distribution 
for x ~ x0. Again using Laplace's method, we find the probability density 
of the subordinate process to be given by 

= I f(xlX)f(XlXo) dX f(xlxo) 

1 / \3/2 f ~  

1 [ xo ]3,2 - el / (x+x~ 1/4x- ~r ( 2 4 )  
- x(x + xo)J 

In terms of the entropy reduction (16), we can express (24) as 

2 - S " ( x )  eAS(x)+~S(xo)_4AS(x+xo ) 
f (x[xo)  - x / ~  [-AS(x) - AS(x0)] 3/2 (25) 

which can be taken as Boltzmann's principle for the probability distribution 
of one component in a composite system when the prior probability distribu- 
tion is a strictly stable law. In other words, it is the stable law counterpart 
of (5), which is a consequence of the central limit theorem. This offers 
further justification for identifying (16) as the entropy reduction of the Ldvy 
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distribution. Moreover, the fact that the entropy reduction (16) is a monotoni- 
cally increasing function ensures that the exponent in (25) is negative definite. 

The probability distribution (15), which is subordinated to the canoni- 
calized Lrvy distribution (18), is exactly normalized in the limit of large x0. 
This is easily seen by introducing the transformation u = l/4(1/x + l/x0) 
into (24), and integrating to obtain 

el/x~ f ~ ( q/--~ /4x0 2 -  -~Uou) le-"-t/4X2Udu~ (26) 

For large values of x0, the lower limit is approximately zero and the integral 
is unity. We thus conclude that the asymptotic limit of large values of the 
variate of a strictly stable distribution is analogous to the large sample limit 
in the central limit theorem. In fact, we will now show that the two domains 
of attraction are, in a certain sense, complementary to one another. 

Interestingly enough, the strictly stable distribution (15) can be derived 
from a particular form of the gamma density 

U-112 
- - -  e - u  ( 2 7 )  f(u) F(l/2) 

by the inverse transform u = l/4x, known as the chi-square distribution. The 
chi-square distribution (27) has only a single degree of freedom, for which 
the central limit theorem is certainly not applicable. In other words, the 
process corresponding to (27) would have vanishing entropy. Yet, by a simple 
inverse transform, it can be converted into a strictly stable law of characteristic 
exponent 1/2, where asymptotic independence is achieved for large values 
of the variate. Hence, the asymptotic independence of strictly stable laws is 
complementary to that of the central limit theorem. 
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